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Abstract

Despite the fact that natural language conver-
sations with machines represent one of the
central objectives of Al, and despite the mas-
sive increase of research and development ef-
forts in conversational Al, task-oriented dia-
logue (TOD) - i.e., conversations with an ar-
tificial agent with the aim of completing a con-
crete task — is currently limited to a few narrow
domains (e.g., food ordering, ticket booking)
and a handful of major languages (e.g., En-
glish, Chinese). In this work, we provide an
extensive overview of existing efforts in mul-
tilingual TOD and analyse the factors prevent-
ing the development of truly multilingual TOD
systems. We identify two main challenges that
combined hinder the faster progress in multi-
lingual TOD: (1) current state-of-the-art TOD
models based on large pretrained neural lan-
guage models are data hungry; at the same
time (2) data acquisition for TOD use cases
is expensive and tedious. Most existing ap-
proaches to multilingual ToD thus rely on
(zero- or few-shot) cross-lingual transfer from
resource-rich languages (in TOD, this is basi-
cally only English), either by means of (i) ma-
chine translation or (ii) multilingual represen-
tation spaces. However, such approaches are
currently not a viable solution for a large num-
ber of low-resource languages without parallel
data and/or limited monolingual corpora. Fi-
nally, we discuss critical challenges and po-
tential solutions by drawing parallels between
ToD and other cross-lingual and multilingual
NLP research.

1 Introduction and Motivation

Endowing machines with the ability to intelligently
converse with humans has been one of the fun-
damental objectives in the pursuit of artificial in-
telligence. As compelling as it is challenging,
developing dialogue systems capable of satisfy-
ing the end user on a par with human-human

interaction remains an elusive target. Narrower
in scope than general-purpose conversational as-
sistants, task-oriented dialogue (TOD) systems
(Gupta et al., 2005; Bohus and Rudnicky, 2009;
Young et al., 2013; Muise et al., 2019) have at-
tracted both scientific and business interest as a so-
far more feasible application, with potential to help
or altogether replace human operators in focused
problems and areas such as restaurant booking
(Kim and Banchs, 2014; Henderson et al., 2019a),
banking (Hardy et al., 2004; Altinok, 2018), travel
(Li et al., 2018; Zang et al., 2020), or healthcare
(Laranjo et al., 2018; Denecke et al., 2019).

The accelerated pace at which new milestones
are reached across natural language applications
thanks to the growing viability of deep learning
techniques has recently catalysed dialogue-oriented
research (Ren et al., 2018; Wen et al., 2019; Hen-
derson et al., 2020; Wu et al., 2020, inter alia).
Coupled with the proliferation of affordable voice
technology (e.g., Amazon Alexa, Google Assis-
tant, Microsoft Cortana, Samsung Bixby), the so-
far distant prospect of virtual assistants becoming
part of everyday reality seems more attainable than
ever. And yet, the momentum of developments in
this area has mainly targeted a very small propor-
tion of their potential beneficiaries, further deep-
ening the chasm in accessibility of state-of-the-art
language technology between speakers of domi-
nant and under-represented languages.' Extending
the reach of conversational technology is crucial
for democratisation of human-machine communi-
cation and requires focusing research efforts on
developing approaches that generalise across di-
verse language varieties and linguistic phenomena,
are robust to cross-cultural differences in dialogue

"For example, Amazon Alexa, one of the most popular
personal assistants, currently supports only eight resource-rich
languages: English, French, German, Hindi, Italian, Japanese,
Brazilian Portuguese, and Spanish.



behaviours, and efficiently capitalise on available
training data, the scarcity of which continues to
be one of the major obstacles on the way to truly
multilingual conversational Al.

In this survey, we take stock of the work car-
ried out to date on multilingual ToD, discuss the
main open challenges and lay out possible avenues
for future developments. In particular, we aim to
systematise the current research and know-hows
related to multilingual TOD, and shed new light on
the following crucial topics:

(Q1) What methods have been applied to mul-
tilingual ToD to date; how can we incorporate
language-specific information and conduct target-
language adaptation into the current methods?

(Q2) What are the additional difficulties when de-
veloping ToOD systems in a number of different
target languages with their semantic and structural
variation and differences?

(Q3) What ToD datasets, in languages other than
English as well as multilingual, are available and
what are their strengths and weaknesses?

(Q4) Which components of TOD systems rely on
cross-lingual capabilities the most?

(Q5) What are the critical future challenges, and
how can multilingual TOD borrow from other re-
lated fields of NLP research to better tackle them?

Despite recent positive trends and a slowly but
steadily growing body of work on creating mul-
tilingual ToD data and methodology, our survey
suggests that the pace of multilingual TOD research
still lags behind other cross-lingual NLP work and
niche NLP tasks (e.g., named entity recognition, de-
pendency parsing, QA) when it comes to linguistic
diversity, training and evaluation data availability,
cross-lingual transfer methodology, joint multilin-
gual modeling, etc. (Ponti et al., 2019a; Hedderich
et al., 2021). We hope that this survey will inspire
more work in this area, 1) attempting at drawing
direct links (including similarities and differences)
between TOD sub-tasks and other cross-lingual
NLP research, which could enable the use and adap-
tation of existing techniques for multilingual and
cross-lingual TOD tasks, and 2) aiming to indicate
the current lack of training and evaluation resources
for a large number of languages and domains.

2 Task-Oriented Dialogue Systems

The purpose of TOD systems, prevalent in practical
applications, is to allow users to complete a con-
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Figure 1: The typical architecture of a modular dia-
logue system. The gray rectangle spans the modules
operating on text, which are in the focus of this survey.

crete task through conversational interaction with
the system (Young, 2010; Chen et al., 2017; Su
et al., 2018). The tasks are typically well-defined
and commonly have a binary outcome, i.e., the task
was either successfully completed through commu-
nication with the system or it was not. Common
examples include booking use cases (restaurants,
transportation, hotels), automation of customer sup-
port (e.g., in domains like banking or telecommu-
nications), or retrieving and providing information
(e.g., in healthcare or tourism). For completeness,
we first provide a concise overview of the two exist-
ing approaches to task-oriented dialogue: (i) modu-
lar approach, in which ToD is broken down into
a pipeline of subtasks and (ii) end-to-end TOD,
where a single neural model is trained to generate
responses based on the preceding context.

2.1 Modular Task-Oriented Dialogue

A modular approach to TOD addresses the com-
plexity of the task by breaking it down into a se-
quence of subtasks. The solution, as depicted in
Figure 1, is a pipeline of independently trained
models (i.e., components): the discrete output of
a preceding component in the pipeline serves as
the input to the next. In this work, we focus our
attention on dialogue systems that operate on text
input and generate text output — such systems are
then extendable to true conversational systems by
prepending an automatic speech recognition (ASR,
speech-to-text) component to the beginning of the
pipeline and appending a speech synthesis (i.e.,
TTS, text-to-speech) component to its end.> The
three core text-based components of each modular
ToD system are: natural language understanding

This extension, as discussed later in 84.5, comes with its
own set of research challenges, but a comprehensive overview
of (multilingual) ASR and TTS approaches falls way beyond
the scope of this overview.



(NLU), dialogue (policy) management (PM), and
response generation (RG), outlined in what follows.

Natural Language Understanding (NLU). In the
context of TOD systems,’ natural language under-
standing refers to the recognition of the crucial
goals and information from the user’s utterances. It
usually encompasses two subtasks, namely intent
classification (also known as dialogue act classifi-
cation) (Ravuri and Stolcke, 2015; Khanpour et al.,
2016) and slot filling (also known as slot labelling
or slot tagging) (Mesnil et al., 2014; Kurata et al.,
2016). The former is a single-label or a multi-
label classification task that assigns one or more
intent labels to the whole user utterance, whereas
the latter extracts values for specific informational
slots expressed in the utterance. For example, the
utterance “show flights from Boston to New York to-
day” has the intent class Find_f1ight and spec-
ifies values for three informational slots — departure
location: Boston; arrival location: New York;
and time: today). Given that slot appearance
depends on the utterance intent, the two tasks are
often addressed jointly via multi-task learning (Xu
and Sarikaya, 2013; Guo et al., 2014; Goo et al.,
2018; Chen et al., 2019; Wu et al., 2020, inter alia).

Traditionally, TOD systems included a compo-
nent for dialogue state tracking (DST), considered
to be in between NLU and dialogue management.
The purpose of DST models (Henderson et al.,
2014b; Mrksi¢ et al., 2017a; Perez and Liu, 2017;
Zhong et al., 2018, inter alia) is to maintain the di-
alogue belief state, a discrete or probabilistic sum-
mary of the dialogue history, encompassing all user
goals and slot values expressed by the user through-
out the conversation. Input to DST at each user turn
consists of the previous belief state and the output
of intent classification and slot filling modules; the
output is the new/updated belief state. More re-
cently, however, attention-based Transformer mod-
els (Vaswani et al., 2017; Devlin et al., 2019), with
their ability to encode long sequences and cap-
ture long-distance semantic dependencies, allowed
to build latent representations of dialogue history
(from scratch) at every turn. This removed the
need for maintaining an explicit belief state, and

31t is important to note that in the wider NLP context,
NLU has a different meaning: it refers to the set of difficult
NLP tasks, solving of which is presumed to require human-
level language understanding competencies and successful
modeling of semantic compositionality in natural language.
Representative NLU tasks include natural language inference
(Williams et al., 2018), reading comprehension (Rajpurkar
et al., 2016), and commonsense reasoning (Sap et al., 2020).

consequently, eliminated DST from many recent
ToD systems (Wolf et al., 2019; Budzianowski and
Vuli¢, 2019). Despite its diminished importance in
more recent Transformer-backed TOD systems, for
completeness we still provide a brief overview of
DST in multilingual ToD later in §3.

Dialogue (Policy) Management (PM) refers to a
ToD component responsible for choosing the sys-
tem actions based on the current dialogue state.
Approaches to PM can be broadly categorized into
rule-based, supervised, and those based on rein-
forcement learning (RL) (Su et al., 2018). RL-
based PM has been the predominant paradigm in
recent years — it is more flexible than rules and
does not require utterance-level annotations like
supervised learning. It does, however, require a
large number of conversations with the final out-
come label (e.g., successful or nor successful) as
reward/penalty for RL. This has directed the re-
search efforts towards simulations of user interac-
tions with the policy manager (EI Asri et al., 2016;
Cuayahuitl, 2017; Cao et al., 2020b). PM models
are agnostic to the dialogue language — they receive
an abstracted representations of the dialogue state
from NLU and/or DST and produce an abstract
action representation for the response generator;
because of this, PM is not of particular interest in
the context of multilingual TOD, that is, it inher-
its all the challenges and solutions directly from
monolingual PM research.

Response Generation (RG) is a module in charge
of producing the system utterances, i.e., responses
to the user utterances, given a system action pre-
dicted by the policy manager. Much like early
PM, early RG efforts relied on templates and rules
hand-crafted by domain experts (Langkilde and
Knight, 1998; Stent et al., 2004; Cheyer and Guz-
zoni, 2006; Mirkovic and Cavedon, 2011, infer
alia). More recent data-driven approaches exploit
ever-growing corpora of online human-human con-
versations (e.g., Reddit, Quora, Twitter) and pro-
duce system responses by either (1) generating
natural language utterances (e.g., Sordoni et al.,
2015; Li et al., 2016b; Wen et al., 2017; Zhang
et al., 2018b; Zhu et al., 2019; Peng et al., 2020)
or (2) retrieving the most suitable response from
a predefined set of candidate replies, also referred
to as response selection (e.g., Lowe et al., 2017a;
Yang et al., 2018; Zhang et al., 2018c; Henderson
et al., 2019b).

Retrieval methods, on the one hand, offer the ad-



vantages of fluency, grammatical correctness and
high-quality of the replies; modern neural natural
language generation generation (NLG), in contrast,
often produce overly general, incoherent, and gram-
matically erroneous utterances (Li et al., 2016a;
Gao et al., 2018; Serban et al., 2016b). On the
other hand, reliance on fixed lists of candidate re-
sponses constrains the versatility of responses, mak-
ing response quality of selection based approaches
highly dependent on the size of the response in-
ventory (i.e., corpus of human-human interactions).
Hybrid methods combine the best of both worlds
(Song et al.; Weston et al., 2018; Pandey et al.,
2018; Yang et al., 2019): they first retrieve a set
of response candidates and then provide them, to-
gether with the user utterance (or wider dialogue
history), as input to a generative model, which then
produce the final system response.

2.2 End-to-end Task-Oriented Dialogue (e2e)

Components of a modular TOD system are trained
in isolation, i.e., the later pipeline components are
not exposed to errors of earlier models at train-
ing time and, consequently, cannot compensate for
those errors at inference. To remedy for this well-
known error cascading issue of pipeline learning
systems, end-to-end TOD relies on neural architec-
tures (Wen et al., 2017; Liu et al., 2018; Qin et al.,
2020). Some e2e models mirror the modules of the
traditional pipeline (Wen et al., 2017), parameters
of which are all jointly tuned in one training pro-
cedure. On the one hand, end-to-end training does
address the component mismatch and error propa-
gation issues of modular TOD. On the other hand,
e2e models aim to capture complex interactions
between intents, policies, and responses in a latent
representation space: this typically requires a large
number of model parameters, reliable estimation of
which requires large amounts of conversations. Re-
quiring large training data, E2E models have been
much more successful in open-domain conversa-
tions (i.e., chat bots) (Serban et al., 2016a; Lowe
et al., 2017b; Adiwardana et al., 2020; Zhang et al.,
2020, inter alia) than in TOD.

2.3 Why is Developing Multilingual Dialogue
Systems Difficult?

Subtasks of the modular TOD systems can be seen
as specific instances of general NLP classes of prob-
lems, e.g., intent classification is a short-text classi-
fication task, whereas slot-filling can be seen as a
sequence-labelling task, or even recast as a span ex-

traction or a question answering task (cf.§4.2). The
best performance in such tasks is obtained with
supervised machine learning models. Truly ad-
dressing multilingualism, thus entails annotated
data for most human languages, for each task of
interest. The fact that collecting labeled data for
most human languages is not feasible is the central
bottleneck of multilingual NLP (Joshi et al., 2020):
most existing datasets for higher-level language un-
derstanding and reasoning tasks (Conneau et al.,
2018; Hu et al., 2020; Ponti et al., 2020) have train-
ing portions only in English. The fact that TOD
most commonly entails a pipeline of supervised
models makes the prospect of truly multilingual
ToD several times more challenging: for optimal
ToD for a given language, one would need to ac-
quire language-specific annotations for each of the
pipeline tasks (i.e., intent detection, slot filling, re-
sponse selection and/or response generation).

Absence of language-specific annotations for
most languages directed research efforts towards
cross-lingual transfer: models trained on labeled
data in a resource-rich language are used to make
predictions for texts in resource-lean languages
with few or no annotations. Successful cross-
lingual transfer, however, requires abstracting
over linguistic (i.e., typological) properties that
vary across languages and is therefore generally
easier to achieve between typologically and et-
ymologically closer languages (Lin et al., 2019;
Lauscher et al., 2020). Cross-lingual word em-
beddings (Ruder et al., 2019; Glavas et al., 2019)
and massively multilingual transformers (MMTs)
(Devlin et al., 2019; Conneau et al., 2020b) have
been the recent vehicles for cross-lingual transfer
of NLP models. While MMTs have initially been
particularly praised for their transfer capabilities
(Pires et al., 2019; Wu and Dredze, 2019), recent
work has shown that their effectiveness drastically
drops in transfers to distant languages and/or lan-
guages represented with small-sized monolingual
corpora in multilingual pretraining of these models
(Lauscher et al., 2020).

While not feasible for low-resource languages,
cross-lingual transfer with MMTs does seem to be
effective for closely related languages with large
monolingual corpora (Pires et al., 2019; Wu and
Dredze, 2019). It could therefore represent a vi-
able solution for task-oriented dialogue in major
languages close to English (e.g., German, Italian,
French, Spanish). Given the abundance of parallel



data between English and these major languages,
another viable solution for TOD in those languages
is addition of machine translation modules to the
pipeline (i.e., from target language to English be-
fore NLU and from EN to target language after
RG). Although conceptually feasible, there is only
anecdotal evidence for effectiveness of these trans-
fer approaches (Schuster et al., 2019a; Liu et al.,
2019b), primarily due to the lack of multilingual
ToD evaluation datasets. Creation of multilin-
gual ToD evaluation datasets across diverse lan-
guages, such as the most recently published Multi-
ATIS++ (Xu et al., 2020), and also across various
domains, is thus necessary for a reliable estimate
of feasibility of translation- and transfer-based ap-
proaches to multilingual TOD. With the current
limitations, it also remains largely unknown how
these different approaches compare against each
other, and which method should be preferred in
relation to particular classes of ToD-related tasks,
languages, and domains one deals with.

3 Existing Efforts in Multilingual and
Cross-Lingual ToD

We now provide an overview of existing efforts in
multilingual TOD as well as cross-lingual transfer
for ToD, focusing on each component of modular
ToD (§3.1-3.3), and then on e2e ToD (§3.4).

3.1 Natural Language Understanding (NLU)

Joint versus Separate Training. NLU ap-
proaches can be divided into two groups depending
on whether they tackle intent classification and slot
filling (i) jointly, in multi-task training regimes
(Schuster et al., 2019a; Liu et al., 2019b; Xu et al.,
2020; Bunk et al., 2020, inter alia) or (ii) indepen-
dently, addressing only one of the tasks or training
an independent model for each of them (Ren and
Xue, 2020; He et al., 2020; Arora et al., 2020, in-
ter alia). Joint multi-task training, besides poten-
tially reducing the number of parameters, is advan-
tageous for NLU (Zhang et al., 2019b), as, the two
tasks are clearly interdependent: intuitively, the
slots for which the values may be provided in an
utterance also depend on the intent of the utterance.

Transfers via MMTs. Given the absence of
training-size data in other languages, the default
approach to multilingual NLU is (zero-shot or
few-shot) transfer of models trained on English
datasets by means of pretrained massively mul-
tilingual transformers (Zhang et al., 2019b; Xu

et al., 2020; Siddhant et al., 2020b; Krishnan et al.,
2021). While most of the work relies on MMTs
pretrained via language modeling objectives, e.g.,
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020b), Siddhant et al. (2020b) show
that a massively multilingual encoder trained via
machine translation (MMTE) allows for a more
effective zero-shot transfer for intent classification
than mBERT. The most recent work of Liu et al.
(2021) shows that an mBERT-based sequence la-
belling overfits to the word order of the source
language and that regularizing for word order infor-
mation (e.g., by removing positional embeddings
or by shuffling tokens) leads to better transfer to
languages with different word order for various se-
quence labelling tasks, including TOD slot filling.

Cross-Lingual Supervision. From the perspective
of cross-lingual supervision, MMTs are unsuper-
vised models, as their pretraining does not require
any explicit alignment between the languages. Rep-
resentation subspaces of individual languages can,
however, be further/better aligned with explicit su-
pervision in the form of word or sentence align-
ments (i.e., parallel data) (Cao et al., 2020b; Con-
neau et al., 2020c), leading to better cross-lingual
transfer in downstream tasks. Aiming to improve
for cross-lingual alignment of mBERT’s represen-
tations Kulshreshtha et al. (2020) systematically
compare (a) projection-based vs. fine-tuning-based
alignment methods driven by (b) cross-supervision
in the form of word translations versus sentence
translations. Their zero-shot transfer results on
three TOD slot-filling datasets (Upadhyay et al.,
2018; Schuster et al., 2019a; Bellomaria et al.,
2019) and five target languages (Hindi, Turkish,
Spanish, Thai, and Italian) indicate that fine-tuning
based on word alignments* is most consequential
for zero-shot transfer.

Earlier work leveraged static cross-lingual word
emebedding spaces (CLWEs) (Mikolov et al., 2013;
Smith et al., 2017; Artetxe et al., 2018; Joulin et al.,
2018; Patra et al., 2019; Glavas and Vuli¢, 2020,
inter alia) as a mechanism for cross-lingual transfer
of NLU models (Upadhyay et al., 2018; Chen et al.,
2018; Schuster et al., 2019a). Reliable induction
of useful CLWEs requires at least a few hundred
word translation pairs (Vuli¢ et al., 2019). Relying
on limited in-domain word-level supervision, i.e.,
a small number (e.g., 10) of word alignments in

“The word alignments, however, were obtained automati-
cally from parallel sentences via FastAlign (Dyer et al., 2013).



the actual TOD domain of interest, either for code-
switching of the English training data (Liu et al.,
2020b) or for refinement of the CLWE space (Liu
et al., 2019b) can further improve the zero-shot
transfer performance in NLU tasks.

Available Datasets. The scope of existing studies
on multilingual and cross-lingual NLU has primar-
ily been defined by the availability of multilingual
datasets for model training and evaluation. While
there are arguably more resources for multilingual
NLU than for other tasks in modular ToD, the land-
scape of existing datasets is still very sparse. We
provide an overview of monolingual NLU datasets
in languages other than English in Table 1 and mul-
tilingual NLU datasets in Table 2.°> Existing NLU
datasets in other languages have been obtained by
translating original English datasets or some of
their portions: Castellucci et al. (2019) translated
the SNIPS dataset (Coucke et al., 2018) to Italian;
Susanto and Lu (2017); Upadhyay et al. (2018);
Xu et al. (2020) translated the ATIS dataset in 10
different languages — however, only the most recent
effort of (Xu et al., 2020) introduced a diverse set
of languages from different language families and
with varying typological properties.

Truly general NLU models would need to gen-
eralize over both languages and domains. Most
existing datasets, however, either cover multiple do-
mains (Hakkani-Tiir et al., 2016; Liu et al., 2019a)
monolingually or the same domain across different
languages (Xu et al., 2020), preventing the inves-
tigation of true generalizability of current cross-
lingual transfer approaches for NLU.

3.2 Dialogue State Tracking (DST)

As discussed in §2.1, DST has recently lost much
of its significance for modular TOD due to ability
of Transformer-based models to capture long dis-
tance dependencies and model the entire dialogue
history. For completeness, we briefly summarize
the existing multilingual DST datasets and cross-
lingual DST approaches, predominantly based on
cross-lingual word embeddings.

Cross-Lingual Transfer Models. Neural Belief
Tracker (NBT) (Mrksic et al., 2017a; Mrksi¢ and
Vuli¢, 2018) is a neural DST approach that es-
timates the user’s goal at every step of the dia-
logue. It learns representation of each slot-value
pair and compares them with utterances in order

SFor completeness, we also provide a subset of the most
established English-only NLU resources in the Appendix.

to determine if a slot-value pair is mentioned. It
was the first fully data-driven DST model which
performed on-par with the models exploiting hand-
crafted lexical rules. With the introduction of the
multilingual WoZ dataset (see later), Mrksié et al.
(2017b) coupled NBT with cross-lingual word em-
beddings to enable zero-shot cross-lingual DST
transfer. A body of subsequent work on special-
izing CLWEs for semantic similarity reported per-
formance gains in cross-lingual transfer for DST,
using NBT as the base model (Vuli¢ et al., 2018;
Glavas and Vulié, 2018; Ponti et al., 2018b, 2019b).
XL-NBT Chen et al. (2018) adapts NBT for tar-
get languages via multilingual knowledge distil-
lation (Hinton et al., 2015): the DST knowledge
of the English teacher is transfered to the target
language student model by means of matching rep-
resentations for parallel instances — word and sen-
tence translations. The results of the most recent
DSTC 9 challenge (Gunasekara et al., 2020), indi-
cate, however, that training state-of-the-art mono-
lingual DST models (Shan et al., 2020; Kim et al.,
2020a) on machine translated training data in the
target language outperforms the zero-shot and few-
shot cross-lingual transfer of source language DST
models. It is worth noting, that DSTC 9 includes
only English and Chinese, major languages with
huge monolingual corpora and abundance of par-
allel data between them. The translation-based
approach to cross-lingual DST transfer would not
be nearly as effective for low-resource languages.

Available Datasets and Benchmarks. Mrksic¢
et al. (2017b) translated the WoZ 2.0 DST dataset
(Wen et al., 2017) to German and Italian. Within
the dedicated Dialogue State Tracking Challenge
(later renamed to Dialog System Technology Chal-
lenges), only 3 out of 9 editions to date included
multilingual DST tracks. DSTC 5 (Kim et al.,
2016) tested DST models in zero-shot cross-lingual
transfer from English (training data) to Chinese (de-
velopment and test data) on the data in the tourism
domain. DSTC 6 (Hori et al., 2019) included
a track on dialog breakdown detection in chat-
oriented dialogues, design the test cross-lingual
transfer abilities of breakdown detection models,
from English to Japanese. Finally, as the first chal-
lenge to test the first to test cross-lingual DST sys-
tems on large scale datasets, DSTC 9 (Gunasekara
et al., 2020) included a track testing the transfer
between English and Chinese (in both directions),
using MultiWOZ 2.1 (Eric et al., 2020) as the En-



Dataset | Task | Language | Domains | Size | #intents | # slots
Non-English monolingual datasets
MEDIA . .
(Bonneau-Maynard et al., 2005) slot extraction fr hotel reservations | 15000 | N/A 83
7 domains,
SLU-IT intent classification; . inter alia,
(Castellucci et al., 2019) slot extraction 1t music, weather, 7142 7 39
restaurant
7 domains,
Almawave-SLU intent classification; . inter alia,
(Bellomaria et al., 2019) slot extraction it music, weather, 14484 17 39
restaurant
(Zhang et al., 2017) intent classification zh S‘EIE_CO}E;’H ted 4000 | 31 N/A
ECSA dataset slot extraction; . N/A
(Gong et al., 2019) named entity extraction zh online commerce | 27615 | N/A (sequence tags)
Chinese ATIS intent classification; .
(He et al., 2013) slot extraction zh airline travels 5871 21 120
Vietnamese ATIS intent classification; . ..
(Dao et al., 2021) slot extraction Vi airline travels 871 2 120

Table 1: Monolingual NLU datasets. The table includes only non-English datasets.

English datasets is provided in Table 7 in the Appendix.

A non-exhaustive list of

Dataset Task(s) Languages | Domains Size # intents | # slots
Multilingual TOP intent classification; Alarm, reminder, 43323 [?n]
(Schuster et al., 2019a) slot extraction en, es, th weather 2(6)33 [es] 12 11
[th]
. . . . . 120
ATIS in Chinese and Indonesian | semantic parsing; . L. .
(Susanto and Lu, 2017) slot extragtion & en, zh, id airline travels 5371 N/A E\l 66;
-calculus)
Multilingual ATIS intent classification; . L. ) 1493 [hi]
(Upadhygay etal., 2018) slot extraction en, hi,tr | airline travels | 35,0 | 21 120
5871 [en]
5871 [es]
5871 [pt]
. . e | en,es,pt, 5871 [de] 18; 84
g{(ﬂgﬁls;gzo) ls‘f;‘;"gxﬂ;‘z:gg““o“ de, fr,zh, | airline travels | 5871[fr] | 17 [hil, | 75 [hi]
” ja, hi, tr 5871 [zh] 17 [tr] 71 [tr]
5871 [ja]
2493 [hi]
1353 [tr]
18788 [en]
semantic parsing; 1 ! domains, 16585 [de]
MTOP intent classi ﬁcati;)n' en, de, fr, inter alia, 15459 [fr] 117 78
(Li et al., 2021) slot extra&ion > | es, hi, th music, news, 16182 [es]
recipes 15195 [hi]
18788 [th]

Table 2: Multilingual NLU datasets.

glish dataset and CrossWOZ (Zhu et al., 2020a)
as the Chinese dataset. Table 3 summarizes the
multilingual DST datasets.

3.3 Natural Language Generation (NLG)

In contrast to other tasks of modular TOD, multi-
lingual response generation for TOD has not un-
dergone the same rate of progress. We thus take a
broader look at multilingual NLG in general.

Traditional NLG. General work aimed at produc-
ing natural language responses in languages other
than English from non-linguistic data or mean-
ing representations traditionally relied on pipeline
NLG architectures (Reiter and Dale, 1997; Ehud

and Robert, 2000). In such pipelines, a linguis-
tic (surface) realiser serves as the last module re-
sponsible for outputting the final surface text based
on language-specific morpho-syntactic and ortho-
graphic requirements (e.g., word order, inflectional
morphology). Approaches to linguistic realisation
include hand-crafted grammar-based systems (Gatt
and Krahmer, 2018; Bateman, 1997; Elhadad and
Robin, 1996), manually created templates (McRoy
et al., 2003), and statistically driven methods (Fil-
ippova and Strube, 2007). To facilitate the general
usage of grammar-based systems, characterised
by high level of linguistic detail, simpler reali-
sation engines that provide syntax and morphol-



Dataset Task Language(s) | Domain (S#Z(gial ogues) H2H / H2M
DSTC 5 dialogue state tourist 35 [en]
(Kim et al., 2016) tracking en, zh information 12 [zh] H2H
Multilingual WOZ 2.0 dialogue state de. it restaurant 1200 H2H
(Mrksic et al., 2017b) tracking en, de, 1 booking (translated)
dialogues from
dialogue existing datasets
DSTC 6 . 615 [en]
. breakdown en, ja and those : H2M
(Hori et al., 2019) detection collected 1696 [ja]
for the challenge
DSTC 9 dialogue h 7 domains in [en] | 10438 [en] HOM
(Gunasekara et al., 2020) | state tracking | ™ % 5 domains in [zh] | 6012 [zh]

Table 3: Multilingual DST datasets. Abbreviations: H2M — human-to-machine; H2H — human-to-human. A
non-exhaustive list of English DST datasets is given in Table 8 in the Appendix.

Dataset Task Language(s) | Domain (S(;f:l ogues) Comments
Non-English monolingual datasets
5 domains,
dialogue state including
CrossWOZ ¢ .
tracking; zh attraction, 6012 H2H;
(Zhu et al., 2020a) end-to-end: hotel.
taxi
12 domains:
. dialogue state including
FZ‘}S]’S*ZYSIZ 20200) | racking: zh education, 11200 H2H:
” end-to-end; car,
hospitality
DuConv 1060000 H2H; web
(Wu et al., 2017) end-to-end zh chit-chat (context-response | scraped from
” pairs) social network;
KdConv chit-chat about H2H; using
(Zhou et al., 2020) end-to-end zh films. music, 4500 an external
” travel knowledge base;
H2H;
6 domains translated from
WMT 2020 Chat | end-to-end de including 692 ]g’ayrl;nc?fet - 2019
ordering pizza, Ehallen e on
movie tickets 8¢
conversational
data translation
Multilingual datasets
19893 [en]
17158 [it] .
XPersona -t d fél’zlﬁ fli’o chit-chat %;gzg E(rj]] glztlc;lr;latically
(Lin et al., 2020b) | €nd-to-en Lo (persona chats) translated from
ja 17322 [zh] Di 1. (2020):
17477 [ko] inan et al. ( );
17428 [ja]

Table 4: Multilingual datasets for end-to-end training.

ogy APIs have been developed (Gatt and Reiter,
2009) and subsequently adapted to a number of
languages, including Spanish (Ramos-Soto et al.,
2017), Galician (Cascallar-Fuentes et al., 2018),
Italian (Mazzei et al., 2016), German (Bollmann,
2011), Brazilian Portuguese (De Oliveira and Sri-
pada, 2014), as well as a bilingual English-French
realiser (Vaudry and Lapalme, 2013). A hybrid ap-
proach coupling linguistic knowledge (i.e., a gram-
mar and a lexicon) with statistical methods was
recently proposed by Garcia-Méndez et al. (2019).

Translation-Based Methods. Given the reliance
of data-driven NLG models on the availability of
training data and its scarcity in the vast majority
of world languages, cross-lingual transfer methods
have been leveraged to enable NLG in low-resource
scenarios. To this end, machine translation (MT)
has been employed to either (i) translate the target
language input to English, feed it into an NLG
system trained on English data, and subsequently
translate the generated English text back to the
target language (Wan et al., 2010), or (ii) translate
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the English training data into the target language
and train the NLG model in the target language
(Shen et al., 2018; Duan et al., 2019).

Multilingual Pretraining of sequence to sequence
models, popular in the most recent machine trans-
lation research (Liu et al., 2020a; Lin et al., 2020a;
Kim et al., 2020b), has been successfully applied in
cross-lingual transfer of NLG models in other appli-
cations as well. For example, Kumar et al. (2019)
first pretrain a bilingual English-Hindi language
model on monolingual corpora of both languages
via denoising autoencoding and back-translation;
they then fine-tune the model for question genera-
tion using a large English and small Hindi dataset.

Similarly, Chi et al. (2020) pretrain the multi-
lingual Transformer-based encoder and decoder of
the seq2seq model on monolingual corpora of mul-
tiple languages, using denoising autoencoding but
additionally leverage parallel sentences for cross-
lingual masked language modelling training. They
then demonstrate the effectiveness of the pretrained
multilingual seq2seq model in cross-lingual trans-
fer for two downstream NLG tasks: question gener-
ation and abstractive summarization. Recent work
has also explored the power of massively multi-
lingual transformers to boost NLG performance
across languages. Adopting the approach of Wang
and Cho (2019), Ronngvist et al. (2019) evaluated
mBERT (Devlin et al., 2019) on NLG tasks in En-
glish, German, Danish, Finnish, Norwegian (Bok-
mal and Nynorsk) and Swedish, and found that: (1)
mBERT significantly underperforms monolingual
counterparts for English and German and (2) it can-
not handle the morphological complexity of Nordic
languages, given that its subword vocabulary and
representations are shared across 104 languages. In
sum, while multilingual pretraining looks promis-
ing for NLG for resource-rich languages, it does
not seem to be a viable solution for lower-resource
languages with smaller amounts of unlabeled text.

Available Datasets. Training data for NLG in
languages other than English is still very limited:
there are small datasets in Korean (Chen et al.,
2010), Spanish (Garcia-Méndez et al., 2019), and
Czech (Dusek and Jurcicek, 2019). There exist
also structured data-to-text datasets for German
and French (Nema et al., 2018) and image-to-
description datasets in Chinese (Li et al., 2016c)
and Dutch (van Miltenburg et al., 2017, 2018), as
well as cross-lingual English-German data (Elliott
etal., 2016).

3.4 End-to-End Dialogue

Lately, there has been increased interest in end-to-
end dialogue modelling. Most of the algorithms
utilise a sequence-to-sequence framework to gen-
erate system responses (Wen et al., 2017; Madotto
et al., 2018; Ham et al., 2020). Unfortunately, train-
ing reliable seq2seq models requires large amounts
of training data, making end-to-end dialogue sys-
tems data hungry. As a result, combined with the
fact that collecting task-oriented dialogues is much
more expensive than collecting open-domain con-
versations for training chatbots, there have been
only a few monolingual end-to-end TOD efforts in
languages other than English: Zhu et al. (2020a)
and Quan et al. (2020) explore e2e TOD in Chinese
and German. We list the available datasets for mul-
tilingual e2e TOD in Table 4. Although this survey
focuses on TOD, for the sake of completeness, we
additionally list available datasets for multilingual
open-domain dialogue.

4 Challenges, Solutions, Outlook

4.1 Linguistic Diversity

A long-term development of multilingual TOD sys-
tems for diverse languages will be driven by our
ability to also evaluate on representative language
samples: in turn, such language-representative eval-
uations would guarantee that developed systems
can generalise to languages not present in the eval-
uation sets, but which come from similar language
families, or display similar typological properties
(Ponti et al., 2019a). The purpose of multilingual
datasets is to assess the expected performance of
a model across languages (Hu et al., 2020; Liang
et al., 2020). If all the languages are similar, cross-
lingual transfer is simplified and we can obtain
overly optimistic performance (Ponti et al., 2019a).
Thus, the languages within any multilingual dataset
should ideally be linguistically diverse.

NLU is the only component which has multiple
multilingual datasets. We assess the linguistic di-
versity of those datasets leveraging the language
sample diversity metrics proposed by Ponti et al.
(2020) to assess the typological, family and geo-
graphical diversity.® The sample diversity scores

To measure typological diversity, we calculate the mean
of entropy of 103 binary URIEL (Littell et al., 2017) fea-
tures for each language. The features are based on linguistic
phenomena recorded in World Atlas of Language Structures
(Dryer and Haspelmath, 2013). To measure family diversity,
the number of distinct families in the dataset is divided by
the total number of languages in the dataset. To measure ge-



Multilingual TOP ~ Multilingual ATIS

MultiATIS++

MTOP XCOPA TyDi QA XNLI

# languages 3 3 9 6 11 11 15
Typology 0.196 0.257 0.343 0.267 0.41 0.41 0.39
Family 0.667 0.667 0.444 0.333 1.0 0.9 0.5
Macroareas 0 0 0 0 1.67 0.92 0.37

Table 5: Assessment of typological and genealogical diversity of multilingual dialogue NLU datasets. Linguisti-
cally diverse datasets of several other NLP tasks shown for comparison: commonsense reasoning (XCOPA Ponti
et al., 2020), natural language inference (XNLI; Conneau et al., 2018) and QA (TyDI QA; Clark et al., 2020). For
the description of the three diversity measures, we refer the reader to (Ponti et al., 2020).

are shown in Table 5.

For comparison, we include the most diverse
datasets for other NLP tasks, e.g., natural language
inference (XNLI, Conneau et al., 2018), causal
commonsense reasoning (XCOPA, Ponti et al.,
2020). It becomes apparent that the existing multi-
lingual dialogue NLU datasets have several short-
comings. First, we observe that they cover only a
single macroarea: Eurasia. Second, the languages
within the multilingual datasets for dialogue NLU
do not cover the full variety of linguistic phenom-
ena. In particular, the languages are identical with
respect to 23 out of 103 typological URIEL fea-
tures.

Moreover, there is currently a crucial lack of
multilingual and cross-lingual dialogue datasets
beyond NLU, with full-fledged multi-turn conver-
sations in diverse multiple languages (see Table 4).
Such datasets, if they existed, would enable end-
to-end training, truly multi-turn TOD systems in
multiple languages which also need to (learn to)
leverage dialogue history and a wider dialogue con-
text. Finally, such datasets with comparable ex-
amples would also enable comparative analyses
between different languages, widening our under-
standing of the critical TOD-related cross-linguistic
similarities and differences. In conclusion, we see
a potential future direction in dataset collection
for multilingual TOD in languages which cover a
much wider set of language families, macroareas
and linguistic phenomena.

4.2 Coping with Low-Resource Scenarios

As discussed in §3, intent detection is a standard
classification task, which can also be recast as a
question answering task (Namazifar et al., 2020),
while slot filling can be framed as standard se-
quence labeling (Louvan and Magnini, 2020) or
a span extraction task (Coope et al., 2020; Hender-

ographical diversity, the entropy of macroareas to which the
languages in the dataset belong to is calculated.

son and Vuli¢, 2021). Along the same line, DST
is sometimes formulated as a standard semantic
parsing task in monolingual multi-domain settings
Cheng et al. (2020): dialogue states are represented
as hierarchical semantic structures which include
the information about domain, actions and slots
which were filled or requested.’

This effectively means that the standard method-
ological 'machinery’, currently used for struc-
turally similar NLP task to deal with low-resource
languages and domains with scarce data, can be
directly applied to guide multilingual modeling
and cross-lingual transfer for NLU in multilin-
gual ToD (Ponti et al., 2019a; Hedderich et al.,
2021). In what follows, we provide a a very brief
and non-exhaustive overview of promising cutting-
edge techniques that might also be applied in low-
resource TOD.? The reader should, however, still
bear in mind the core deficiencies of the current
methodology in relation to multilingual TOD, as
also discussed in §2.3.

Low-resource languages should benefit from an-
notated resources in higher-resource languages. Be-
sides direct MT transfer (Upadhyay et al., 2018;
Schuster et al., 2019a; Hu et al., 2020), annota-
tions can be propagated source-to-target using par-
allel data and word alignments (Ni et al., 2017;
Jain et al., 2019; Xu et al., 2020). Annotation
and model transfer can also be realised via cross-
lingual word embeddings (Glavas et al., 2019;
Ruder et al., 2019). More recently, unmatched

"Formulating DST as semantic parsing opens up several
paths for future research. First, structured representations nat-
urally allow for semantic compositionality and cross-domain
knowledge sharing. Similarly, they could allow for cross-
lingual knowledge sharing. Secondly, structured represen-
tations facilitate the use of external knowledge. Tables are
widely used in semantic parsing (Zhu et al., 2020b; Sun et al.,
2019) and could be applied for efficient search and informa-
tion extraction. This could be efficient for cross-lingual slot
labelling (e.g., if a table includes names of a city in different
languages).

8For a comprehensive survey of methods for low-resource
NLP, we refer the reader to (Hedderich et al., 2021).



transfer performance has been achieved with multi-
lingual Transformer-based language models such
as multilingual BERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020b), and mT5 (Xue et al., 2020),
further applying (i) transfer techniques adapted to
particular transfer directions (Schuster et al., 2019b;
Conneau et al., 2020c; Cao et al., 2020a), truly
low-resource languages (Pfeiffer et al., 2020a; Hed-
derich et al., 2020; Ustiin et al., 2020), even to those
with unseen scripts (Pfeiffer et al., 2020b), (ii) few-
shot learning with a small subset of target-language
annotated examples (Lauscher et al., 2020; Bhat-
tacharjee et al., 2020). However, current perfor-
mance of cross-lingual transfer for low-resource
languages (e.g., African languages, indigenous lan-
guages of the Americas) still cannot even remotely
match transfer achieved for high-resource target
languages (Lauscher et al., 2020; Wu and Dredze,
2020; Zhao et al., 2020).

Pretrained language models can also be adap-
tively fine-tuned with unannotated in-domain data
in both source and target language (Ponti et al.,
2020) to pick up more domain-specific knowl-
edge, which typically results in slight performance
gains (Henderson et al., 2020; Gururangan et al.,
2020). Along the same line, the entire research
area focusing on domain adaptation in NLP (Kim
et al., 2018; Ziser and Reichart, 2018; Riicklé et al.,
2020; Ramponi and Plank, 2020) can also offer
direct guidance on how to leverage high-resource
ToD domains to boost performance in resource-
lean TOD domains. Note that in multilingual
setups, we might typically encounter extremely
difficult “double-scarce” setups, simultaneously
dealing with both low-resource domains and low-
resource languages.

It might also be possible to make the multi-
lingual TOD NLU models more robust in low-
resource scenarios through data augmentation (Du
et al., 2020; Xie et al., 2020): (i) at token level
with synonymy-based substitutions generated au-
tomatically (Kobayashi, 2018; Gao et al., 2019)
or taken from lexico-semantic resources (Raiman
and Miller, 2017; Wei and Zou, 2019; Dai and
Adel, 2020), or rule-based morphological inflec-
tion (Vuli¢ et al., 2017; Vania et al., 2019), (ii) at
sentence level with manipulating dependency trees
(Ponti et al., 2018a; Sahin and Steedman, 2018),
MT-based back-translation (Edunov et al., 2018),
or generating synthetic adversarial examples (Garg
and Ramakrishnan, 2020; Morris et al., 2020); (iii)

at annotation level automatically labeling more sen-
tences, filtering them, and using them as silver
training data (Onoe and Durrett, 2019; Du et al.,
2020). Slot tagging, as a sequence labeling task,
might also profit from distant and weak supervi-
sion methods (Luo et al., 2017; Alt et al., 2019),
often leveraged to boost structurally similar low-
resource NER models (e.g., Cao et al., 2019; May-
hew et al., 2019; Lison et al., 2020). Similar princi-
ples can be applied to cross-lingual text classifica-
tion with limited resources (Karamanolakis et al.,
2020). Meta learning principles such as MAML
(Finn et al., 2017) have also emerged recently as a
means to deal with low-resource cross-lingual and
cross-domain transfer for standard classification
tasks (Nooralahzadeh et al., 2020; van der Heij-
den et al., 2021), but they are yet to find their true
application in (multilingual) TOD systems.

Source Selection. Recently, there has been in-
creased interest in zero-shot methods for multi-
lingual NLU (Liu et al., 2020b; Xu et al., 2020;
Krishnan et al., 2021). In the zero-shot scenario,
a model trained on one or more languages (source
languages) is tested on a target language different
from the source. When porting a dialogue system
to new languages, zero-shot transfer is an effective
method to bypass costly data collection and annota-
tion for every target language. However, we detect
two crucial gaps which require more attention in
future work: 1) similar to other research in cross-
lingual NLP, it is highly likely that few-shot transfer
will yield huge benefits over fully zero-shot trans-
fer (Lauscher et al., 2020); 2) the actual source lan-
guage(s) for zero-shot and few-shot cross-lingual
transfer in low-resource scenarios may have a huge
impact on the final task performance, as validated
in other NLP areas (Zoph et al., 2016; Dabre et al.,
2017; Lin et al., 2019), and more recently hinted for
multilingual NLU (Krishnan et al., 2021). In other
words, a standard go-to option of always transfer-
ring from English might be suboptimal for a large
number of target languages.

In order to empirically verify and establish this
conjecture, we conduct a simple empirical study
validating that this holds for dialogue NLU, addi-
tionally showing that syntactic similarity is an es-
pecially strong predictor of zero-shot performance.

For the experiments, we rely on multilingual
BERT fine-tuned for the two dialogue NLU tasks
by adding classification layers on top. We fine-tune
the model on every language available in Multi-
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Figure 2: Intent classification and slot labelling performance depending on linguistic source-target similarity.

Feature Group Intent Classification Slot Labelling

Phonology -0.2467 -0.2504
Geography -0.2263 -0.3270
Phylogenetics -0.4895 -0.6122
Syntax -0.5131 -0.6919

Table 6: Measuring correlation between zero-shot NLU
transfer performance and source-target language simi-
larity based on different groups of properties. Phonol-
ogy and syntax features from URIEL (Littell et al.,
2017) are based on the World Atlas of Language Struc-
tures (WALS) (Dryer and Haspelmath, 2013). Phylo-
genetic features are based on Glottolog (Hammarstrém
et al., 2017).

ATIS++ (see Table 2) and evaluate it on all lan-
guages excluding the language it was tuned on.
In order to quantify language similarity, we use
the cosine similarity between URIEL feature vec-
tors (Littell et al., 2017), which capture typological
(syntactic, phonological, phonetic), geographic and
phylogenetic language properties. In order to mea-
sure the correlation between linguistic similarity
and transfer performance, we compute Pearson’s
r between language similarity and transfer perfor-
mance on target languages.

The results on both tasks are summarised in Fig-
ure 2. We observe moderate and high correlation
scores between source-target language similarity
and task performance. In addition, an ablation
study (see Table 6) looking at the correlation be-
tween zero-shot performance and similarity in dif-
ferent linguistic properties, reveals that syntactic
similarity seems to play a particularly important
role in choosing a suitable source. As a general
finding, this small study suggests that: 1) care-
fully picking source languages, and 2) balancing

the annotation budget across and annotating more
dialogue data for typologically diverse languages
may steer and substantially improve dialogue NLU
performance in the future.

4.3 Language Adaptation and Fluency

Besides coping with a wide semantic variability of
user utterances in the NLU components, multilin-
gual ToD systems also need to produce accurate
and fluent responses fully adapted to the language
at hand, and sounding native to the user. Given
the dialogue context so far and constrained by the
domain, the response generation module should
output a response which is articulate and fits in
the given context, without breaking the flow of the
multi-turn conversation (Garbacea and Mei, 2020).

There are complexities which are common to
Natural Language Generation tasks in general such
as complex morphology (e.g., Slavic languages,
agglutinative languages such Finnish or Turkish,
polysynthetic languages). Generating fluent text in
such morphologically rich languages is naturally
much more complex than in morphologically poor
ones (Kunchukuttan et al., 2014; Gerz et al., 2018).
This is due to data scarcity stemming from the in-
ability to hold all the possible word forms in the vo-
cabulary or word “over-segmentation” with recent
subword-based pretrained Transformers, which
negatively affects word and sentence semantics
(Ronngvist et al., 2019; Rust et al., 2020). NLG in
morphologically rich languages can benefit from
dedicated language-specific tokenisers (Rust et al.,
2020), from incorporating linguistic features (Kle-
men et al., 2020), or from multi-tasking (Passban
et al., 2018), predicting the next word and morpho-



logical information simultaneously.’

Furthermore, there are linguistic phenomena
specific for informal, conversational language,
e.g., colloquialisms and code-switching. Code-
switching is a phenomenon where interlocutors
shift from one language to another during the con-
versation (Sankoff and Poplack, 1981). Previously,
it was shown that code-switching might even im-
prove task success of the system and its perceived
friendliness (Ahn et al., 2020).

Banerjee and Khapra (2019) show that structure-
aware generation is effective for code-switched
data, even when dependency parsers are not avail-
able. With respect to modelling code-switched
input, Khanuja et al. (2020) show that, to work in
code-switching settings, cross-lingual models such
as mBERT should be fine-tuned on code-switched
data, as lexical distribution in code switched lan-
guage is different from the union of two languages.
Additionally, prior work shows that we obtain sig-
nificant improvements on all dialogue tasks when
large Transformer encoders are directly pretrained
on conversational data (Henderson et al., 2020;
Mehri et al., 2020). That means that in order to
train ToOD systems which can code switch we re-
quire large code-switching dialogue datasets which
are not available yet.

Finally, language fluency and the more general
user satisfaction, which concerns not only what
the system responds, but also how it conveys in-
formation, cannot be entirely captured with fully
automatic evaluation measures. This renders the
need to conduct human-centered evaluations in or-
der to really capture and trace any improvements
in fluency and the user satisfaction with the general
eloquence of TOD systems in different languages,
leading us to the next challenge discussed in §4.4.

4.4 Evaluation of Multilingual TOD Systems

A crucial step in the development of TOD sys-
tems is evaluation (Deriu et al., 2021). For the
modular TOD pipeline, there are standard auto-
mated metrics to evaluate each component, e.g.,
intent accuracy and slot F} for NLU or joint goal
accuracy for DST. Recently, DialoGLUE (Mehri
etal., 2020), a benchmark to evaluate TOD systems,
has been proposed, but the benchmark is available

° Another problem in multilingual setups concerns differ-
ent word orders, where NLG might be directly informed by
typological information through structural adaptations (Ponti
et al., 2018a), but currently there is little to no work at all
coupling NLG and linguistic typology (O’Horan et al., 2016).

only in English. Such benchmarks based on auto-
mated metrics are useful for evaluating progress
on development of general TOD systems. We thus
hope that, similar to recent benchmarks for general-
purpose (i.e., non-ToOD) cross-lingual NLU such
as XTREME (Hu et al., 2020) and XGLUE (Liang
et al., 2020), future work will look into building
comprehensive and community-supported multilin-
gual ToD benchmarks and services.

However, evaluation of TOD systems still adds
another layer of difficulty, typically not present
with other NLP tasks, such as the ones covered
in XTREME or XGLUE. In short, previous work
shows that strong performance on automated met-
rics does not always correlate with the overall user
satisfaction with the system (Liu et al., 2016). This
means that human evaluation is still the most reli-
able way to evaluate the ultimate dialogue system
usability and usefulness.

Human evaluation for TOD systems aims to fig-
ure out whether the user was satisfied with the in-
teraction (user satisfaction) or whether the system
has completed the task (fask success) (Deriu et al.,
2021). Generally, human evaluations are costly
and time-consuming. Multilingual TOD systems
inherit the same costs but also pose new questions
for commonly used human evaluation protocols.
Firstly, hiring qualified users in many languages is
even more expensive than in English. For lower-
resource languages, the problem goes beyond the
expenses: sometimes it is hard (or impossible) to
find fluent speakers of those languages on com-
monly used platforms such as Amazon Mechanical
Turk. Secondly, when hiring evaluators from differ-
ent countries, one needs to consider whether there
are cultural differences due to which user satisfac-
tion could be altered.

4.5 Voice-Based Multilingual Dialogue?

This survey, following the current mainstream in
monolingual and multilingual TOD modeling, has
focused on text-based input. However, the as-
sumption of working with clean, native input text
is unrealistic: in fact, it underestimates the er-
rors which can cascade from imperfect automatic
speech recognition (ASR) to the subsequent text-
based modules. While there is some monolingual
English TOD work which pays attention to recov-
ering from ASR errors and incorporating imper-
fect ASR output into subsequent text-based mod-
ules (Henderson et al., 2014a; Mrksi¢ et al., 2017a;



Ohmura and Eskénazi, 2018, inter alia), the cru-
cial speech-to-text and text-to-speech bridges are
typically overlooked in multilingual TOD research:
this also means that we are currently overestimating
the abilities of our voice-based TOD systems.

ASR and speech-to-text synthesis are wide re-
search fields in its own right, also advocating an ex-
pansion towards multilinguality as a long-standing
and crucial research goal (Le and Besacier, 2009;
Ghoshal et al., 2013; Conneau et al., 2020a, in-
ter alia). The current mainstream ASR paradigm
also relies on transfer learning with large pretrained
Transformer-based multilingual models (Conneau
et al., 2020a; Pratap et al., 2020a). Similar to mul-
tilingual BERT or XLM-R in the text domain, a
heavily parameterized multilingual ASR model is
trained on a large multilingual speech corpus, and
then fine-tuned with smaller amounts of speech
data in particular target languages (Pratap et al.,
2020b). Nonetheless, even this approach, termed
’massively multilingual’ by Pratap et al. (2020a),
spans only around 50 languages.'® A similar situ-
ation is observed with multilingual text-to-speech
(TTS) research: despite recent efforts, multilingual
TTS modules are available for a tiny fraction of lan-
guages (Zhang et al., 2019a; Nekvinda and Dusek,
2020), even smaller than what multilingual ASR
currently supports.

This effectively means that voice-based TOD
is still out of reach for the large of majority of the
world’s languages (Joshi et al., 2020). In the pursuit
of wider-scale and democratised TOD technology,
we advocate a tighter integration of speech-based
and text-based modules in future work, as well
as more realistic evaluation protocols which also
include ASR and TTS error analyses. Any future
developments of multilingual TOD are also tightly
coupled with parallel developments in multilingual
ASR and TTS as standalone research areas highly
relevant to multilingual ToOD.

4.6 Other Related Areas

We have attempted at covering multiple facets and
research areas related to multilingual conversa-
tional Al, as an extremely wide multi-disciplinary
and multi-layered field. However, we also acknowl-
edge that there are other aspects associated with de-
velopment and deployment of full-fledged and en-

0n top of this, recent research has shown that ASR does
not provide equitable service to native speakers of the same
language from different backgrounds (Koenecke et al., 2020),
which is yet another research problem in its own right.

gaging multilingual TOD systems which remained
out of our core focus. These other directions in-
clude (but are not limited to): 1) making ToOD
systems more adaptable and empathetic by rely-
ing on implicit conversational cues and (multilin-
gual) emotion recognition (Pittermann et al., 2010;
Heracleous et al., 2020; Meng et al., 2020); 2) in-
corporating the information from miscellaneous
knowledge bases to improve the system’s common-
sense reasoning and world knowledge capabilities
(Eric et al., 2017; Madotto et al., 2018; Haihong
et al., 2019); 3) grounding dialogue in perceptual
(typically visual) contexts (de Vries et al., 2017;
AlAmri et al., 2019; Shekhar et al., 2019; Agar-
wal et al., 2020).'! Stepping a bit further away,
it is also quite intuitive that further developments
in massively multilingual machine translation and
MT for low-resource languages (Siddhant et al.,
2020a,b; Garcia et al., 2020; Fan et al., 2020) will
also (continue to) have substantial impact on the
development of multilingual ToD.

5 Conclusion

Enabling machines to converse as humans is one
of the central goals of Al, and achieving this in a
multitude of the world’s languages is an even more
complex challenge. In this work, we have presented
an overview of the current efforts, which spans a
survey on the existing methodology and available
datasets, and future challenges concerning multi-
lingual task-oriented dialogue (TOD) systems. We
have also pointed at the main current limitations
and gaps (e.g., a notoriously difficult and expen-
sive dialogue data collection becomes even more
difficult in multilingual scenarios), aiming to in-
spire more work in this important area. In the long
run, we hope that our overview will fulfil its di-
dactic purpose, as well as foster and guide future
developments of multilingual TOD towards truly
multilingual and inclusive conversational Al.
Finally, one by-product of this work, potentially
useful to other researchers and practitioners in-
terested in this emerging field, is an up-to-date
overview of all the scoped monolingual and multi-
lingual ToD datasets, which is available here.

"Besides providing the additional (situational) context to
dialogues in general, multi-modal modeling might be even
more useful in cross-lingual settings, since visual input (e.g.,
images, videos) also serve as naturally occurring interlingua
(Kiela et al., 2015; Gella et al., 2017; Rotman et al., 2018;
Sigurdsson et al., 2020).


https://github.com/evgeniiaraz/datasets_multiling_dialogue
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A English NLU datasets

Dataset ‘ Task Language | Domains ‘ Size ‘ # intents | # slots

English datasets

Banking-77 . . . .

(Casanueva et al., 2020) intent classification | en banking 13083 | 77 N/A
10 domains,

CLINC-150 . . . inter alia,

(Larson et al., 2019) intent classification | en banking, work, 23700 | 150 N/A
travel, small talk
21 domains,

HWU64 1nte?nt clasmﬁ.catlon; en 1nter. alia, 25716 | 64 s4

(Liu et al., 2019a) entity extraction music, news,
calendar

Restaurants-8K . .

(Coope et al., 2020) slot extraction en restaurant booking | 11929 | N/A 5
7 domains,

Snips intent classification; inter alia,

(Coucke et al., 2018) slot extraction en music, weather, 14484 17 39
restaurant

ATIS intent classification; .

(Price, 1990) dlot extraction en airline travels 5871 21 120

Table 7: English NLU datasets. This list is non exhaustive.



B English DST datasets

Dataset Task Language(s) | Domain (S(;?;logues) H2H / H2M
Monolingual

@iglet al., 2005; Williams et al., 2013) ?rfc!g;gr?; HE en bus information | 15886 H2M
zzseflgjrson et al., 2014a) ?rl:cliig;lge S L en gjéi?:;m 3000 H2M
szOefitoal., 2017; Mrksic et al., 2017a) ?ﬁfclﬁfg e ;iséililrr;m 1200 H2H

Table 8: Englsh DST datasets. This list is non exhaustive. Abbreviations: H2M — human-to-machine; H2H —
human-to-human.



C English end-to-end datasets

Size

Dataset Task Language(s) | Domain (dialogues) Comments
end-to-end; 7 domains,
MultiwOZ dialogue state including .
(Budzianowski et al., 2018) | tracking; en restaurant, 10438 H2H;
slot extraction; taxi
6 domains,
Taskmaster-1 including . .
(Byrne et al., 2019) end-to-end en ordering pizza, 7708 Self-dialogues;
movie tickets
end-to-end;
intent 6 domains,
MultiDoGo classification; including
(Peskov et al., 2019) slot extraction; en airline, 40576 H2H
dialogue acts software
classification;
H2H;
ConvAI2 end-to-end en chit chat, 19893 derived from

(Dinan et al., 2020)

not goal oriented

Persona-Chat
(Zhang et al., 2018a)

Table 9: English datasets for end-to-end training.




